2 research outputs found

    A cooperative mobile robot and manipulator system (Co-MRMS) for transport and lay-up of fibre plies in modern composite material manufacture

    Get PDF
    Composite materials are widely used in industry due to their light weight and specific performance. Currently, composite manufacturing mainly relies on manual labour and individual skills, especially in transport and lay-up processes, which are time consuming and prone to errors. As part of a preliminary investigation into the feasibility of deploying autonomous robotics for composite manufacturing, this paper presents a case study that investigates a cooperative mobile robot and manipulator system (Co-MRMS) for material transport and composite lay-up, which mainly comprises a mobile robot, a fixed-base manipulator and a machine vision sub-system. In the proposed system, marker-based and Fourier transform-based machine vision approaches are used to achieve high accuracy capability in localisation and fibre orientation detection respectively. Moreover, a particle-based approach is adopted to model material deformation during manipulation within robotic simulations. As a case study, a vacuum suction-based end-effector model is developed to deal with sagging effects and to quickly evaluate different gripper designs, comprising of an array of multiple suction cups. Comprehensive simulations and physical experiments, conducted with a 6-DOF serial manipulator and a two-wheeled differential drive mobile robot, demonstrate the efficient interaction and high performance of the Co-MRMS for autonomous material transportation, material localisation, fibre orientation detection and grasping of deformable material. Additionally, the experimental results verify that the presented machine vision approach achieves high accuracy in localisation (the root mean square error is 4.04 mm) and fibre orientation detection (the root mean square error is 1.84 18) and enables dealing with uncertainties such as the shape and size of fibre plies

    Comprehensive simulation of cooperative robotic system for advanced composite manufacturing: A case study

    Get PDF
    Composite materials are widely used because of their light weight and high strength properties. They are typically made up of multi-directional layers of high strength fibres, connected by a resin. The manufacturing of composite parts is complex, time-consuming and prone to errors. This work investigates the use of robotics in the field of composite material manufacturing, which has not been well investigated to date (particularly in simulation). Effective autonomous material transportation, accurate localization and limited material deformation during robotic grasping are required for optimum placement and lay-up. In this paper, a simulation of a proposed cooperative robotic system, which integrates an autonomous mobile robot with a fixed-base manipulator, is presented. An approach based on machine vision is adopted to accurately track the position and orientation of the fibre plies. A simulation platform with a built-in physics engine is used to simulate material deformation under gravity and external forces. This allows realistic simulation of robotic manipulation for raw materials. The results demonstrate promising features of the proposed system. A root mean square error of 9.00 mm for the estimation of the raw material position and 0.05 degrees for the fibre orientation detection encourages further research for developing the proposed robotic manufacturing system
    corecore